![Aleph number](http://www.alephbooks.com/images/boeken/-34672428.jpg)
In the branch of mathematics known as set theory, the aleph numbers are a sequence of numbers used to represent the cardinality (or size) of infinite sets. They are named after the symbol used to denote them, the Hebrew letter aleph (
![aleph](http://upload.wikimedia.org/math/1/a/c/1acc955c2027913bc6aec9e08521cced.png)
The cardinality of the natural numbers is
![aleph_0](http://upload.wikimedia.org/math/b/e/4/be4c703ed73456618ed283b892c6715a.png)
![aleph_1](http://upload.wikimedia.org/math/9/b/c/9bc9d952e0d3fb65351053e08b3dfe0a.png)
![aleph_2](http://upload.wikimedia.org/math/2/b/f/2bf96d57ff8229a5bea008e99d31996d.png)
![aleph_alpha](http://upload.wikimedia.org/math/c/7/3/c73ee00bb8d2e6bcb1f994c2bb48d901.png)
The concept goes back to Georg Cantor, who defined the notion of cardinality and realized that infinite sets can have different cardinalities.
The aleph numbers differ from the infinity (∞) commonly found in algebra and calculus. Alephs measure the sizes of sets; infinity, on the other hand, is commonly defined as an extreme limit of the real number line (applied to a function or sequence that "diverges to infinity" or "increases without bound"), or an extreme point of the extended real number line. While some alephs are larger than others, ∞ is just ∞.
Aleph-null
![aleph_1](http://upload.wikimedia.org/math/9/b/c/9bc9d952e0d3fb65351053e08b3dfe0a.png)
![aleph_1](http://upload.wikimedia.org/math/9/b/c/9bc9d952e0d3fb65351053e08b3dfe0a.png)
![aleph_0](http://upload.wikimedia.org/math/b/e/4/be4c703ed73456618ed283b892c6715a.png)
![aleph_1](http://upload.wikimedia.org/math/9/b/c/9bc9d952e0d3fb65351053e08b3dfe0a.png)
![aleph_0](http://upload.wikimedia.org/math/b/e/4/be4c703ed73456618ed283b892c6715a.png)
![aleph_1](http://upload.wikimedia.org/math/9/b/c/9bc9d952e0d3fb65351053e08b3dfe0a.png)
![aleph_1](http://upload.wikimedia.org/math/9/b/c/9bc9d952e0d3fb65351053e08b3dfe0a.png)
![aleph_0](http://upload.wikimedia.org/math/b/e/4/be4c703ed73456618ed283b892c6715a.png)
Ω is actually a useful concept, if somewhat exotic-sounding. An example application is "closing" with respect to countable operations; e.g., trying to explicitly describe the σ-algebra generated by an arbitrary collection of subsets. This is harder than most explicit descriptions of "generation" in algebra (vector spaces, groups, etc.) because in those cases we only have to close with respect to finite operations — sums, products, and the like. The process involves defining, for each countable ordinal, via transfinite induction, a set by "throwing in" all possible countable unions and complements, and taking the union of all that over all of Ω.
The continuum hypothesis
Conventionally the smallest infinite ordinal is denoted ω, and the cardinal number
![aleph_omega](http://upload.wikimedia.org/math/a/d/6/ad6536208930b5a951c16228acc242db.png)
![left{,aleph_n : ninleft{,0,1,2,dots,right},right}.](http://upload.wikimedia.org/math/6/7/5/675b157afa31200cbca86e3aa65a8cf7.png)
Aleph-ω is the first uncountable cardinal number that can be demonstrated within Zermelo-Fraenkel set theory not to be equal to the cardinality of the set of all real numbers; for any positive integer n we can consistently assume that
![2^{aleph_0} = aleph_n](http://upload.wikimedia.org/math/d/1/3/d1313f9aa0910a233f5171651ba658ca.png)
![2^{aleph_0}](http://upload.wikimedia.org/math/a/b/5/ab543a3de71af10270830e31af27b8b8.png)
![aleph_0](http://upload.wikimedia.org/math/b/e/4/be4c703ed73456618ed283b892c6715a.png)
![aleph_0](http://upload.wikimedia.org/math/b/e/4/be4c703ed73456618ed283b892c6715a.png)
Aleph-ω
To define aleph-α for arbitrary ordinal number α, we must define the successor cardinal operation, which assigns to any cardinal number ρ the next bigger well-ordered cardinal ρ . (If the axiom of choice holds, this is the next bigger cardinal.)
We can then define the aleph numbers as follows
![aleph_{0} = omega](http://upload.wikimedia.org/math/4/3/4/434ad1783d3cea24a466bb693fb0814a.png)
![aleph_{alpha+1} = aleph_{alpha}^+](http://upload.wikimedia.org/math/2/b/2/2b23a417cb046b7865b7d5fa642c7d06.png)
and for λ, an infinite limit ordinal,
![aleph_{lambda} = bigcup_{beta < lambda} aleph_beta.](http://upload.wikimedia.org/math/9/2/a/92a8c5ce48a2a2909e32924c4092f047.png)
The α-th infinite initial ordinal is written ωα. Its cardinality is written
![aleph_alpha](http://upload.wikimedia.org/math/c/7/3/c73ee00bb8d2e6bcb1f994c2bb48d901.png)
Aleph-α for general α
For any ordinal α we have
![alphaleqaleph_alpha.](http://upload.wikimedia.org/math/f/4/7/f47d0a3de6a9671ec209be2b701744b1.png)
In many cases
![aleph_{alpha}](http://upload.wikimedia.org/math/6/9/d/69d251d5eecd554976433550c3b9edd1.png)
![aleph_0, aleph_{aleph_0}, aleph_{aleph_{aleph_0}},ldots](http://upload.wikimedia.org/math/e/c/8/ec89fa351886df4c322d268bd5562667.png)
Any inaccessible cardinal is a fixed point of the aleph function as well.
Aleph number in popular culture
Uncountable set
Continuum hypothesis
Beth number